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SUMMARY

This work presents a nonlinear adaptive output feedback excitation control, designed for a synchronous
generator modelled by a standard third-order model on the basis of the physically available measurements
of relative angular speed, active and reactive electric power and terminal voltage. The power angle, which is
a crucial variable for the excitation control, as well as mechanical power and the impedance of the
transmission line connecting the generator to an infinity bus, are not assumed to be available for feedback.
The feedback control achieves transient stabilization and voltage regulation when faults occur to the
turbines or the transmission lines, such that parameters (mechanical power and line impedance) may
permanently take any (unknown) value. The controller recovers by adaptation the unknown values and
simultaneously generates trajectories to be followed by the states, that converge to the new equilibrium
point. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Power system stabilization has been dealt with for many years by both control and power
systems communities. For the latter, the goal is to have stable, reliable and robust electrical
energy production and distribution. On the other hand, control system teams develop quite
more complicated systems which may be difficult to implement. Our goal here is to present new
control methods for power system stabilization, which are closer to physical considerations.
These new control methods, mainly based on modern nonlinear techniques, may improve power
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systems stabilization since classical controllers found in most power plants have limitations in
performance and in operation region.

On the other hand, the theoretical interest of these systems becomes evident as we remark that
power generators are described by nonlinear equations with unknown time-varying parameters.
There is no full state measurement, and they are underactuated systems. All these features make
the problem quite difficult and interesting from a theoretical point of view. Its classical solution
is presented in References [1,2] using robust linear techniques that are widespread in most
power plants. Modern linear robust and adaptive control techniques applied to this problem,
may be seen in References [3-5]. Recently, feedback linearization [6—8] as well as nonlinear
adaptive techniques [9, 10] were proposed to design stabilizing controllers with the purpose of
enlarging the stability region of the operating condition.

The nonlinear feedback control algorithms so far proposed in the literature make use of
power angle and mechanical power measurements, which are physically not available. These
algorithms have also the difficulty of determining the faulted equilibrium value which is
compatible with the required terminal voltage once the fault (mechanical or electrical failure)
has occurred. This is our motivation to propose a nonlinear scheme based only on actually
measured outputs. First, in Section 2, following the lines of our previous works [11-13], we
make use of the standard third-order model used in Reference [10] (see References [2, 14]) to
show that the terminal voltage, the relative angular speed and the active electric power (which
are actually measurable and available for feedback) are state variables in the physical region of
the state space. We then develop an adaptive feedback linearization of the system achieving
exponential stability of the closed-loop system, as presented in Section 3. To do so, for a given
set of unknown parameters, we recover, by adaptation, the new equilibrium point of the system
and generate, on-line, a trajectory that drives the generator toward this point. This task becomes
complicated as we have a nonlinear and nonlinearly parametrized system with unknown time-
varying parameters, without full state measurement. Tracking in such systems is a difficult task,
and has been recently studied for the SISO case in Reference [15]. We conclude the paper with
simulations (Section 4) that show the good behaviour of the adaptive controller in the presence
of transmission line and turbine faults.

2. DYNAMICAL MODEL

The power generator is represented by the standard model presented in Reference [2] (also used
in References [7, 8, 10, 14]) that may be decomposed in a mechanical and an electrical parts. The
advantage of such a model is that although being of low order, it expresses well the behaviour of
large systems. This fact (model reduction) is well developed in Reference [16] where a
mathematical approach leads to the same conclusions of standard physical simplifications. In
practice, this may be seen as the Thevenin equivalent of a large network.

Let us first consider the simplified mechanical model expressed in per unit as

d=w

(1
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where 0 (rad) is the power angle of the generator relative to the angle of the infinite bus rotating
at synchronous speed ws; @ (rad/s) is the angular speed of the generator relative to the
synchronous speed ws i.e. @ = wg — ws with w, being the generator angular speed; H(s) is the
per unit inertia constant; D(p.u.) is the per unit damping constant; Pp(p.u.) is the per unit
mechanical input power; P.(p.u.) is the per unit active electric power delivered by the generator
to the infinite bus. Note that the expression w?/w, is simplified as w?/w, ~ wj in the right-hand
side of (1). The active and reactive (Q(p.u.)) powers are given by

_ e,
P, = X—ds sin(0) 2

Vs V2
=—EFE,cos(d) — == 3)
Q de 1 de
where E,(p.u.) is the quadrature’s EMF; V(p.u.) is the voltage at the infinite bus; Xgys(p.u.)
éXT+%XL+Xd is the total reactance which takes into account Xg4(p.u.), the generator
direct axis reactance, X (p.u.), the transmission line reactance, and Xt(p.u.), the reactance
of the transformer. The quadrature EMF, E,, and the transient quadrature EMF, E/, are
related by
Xgs ., Xa-—

E — dV cos(d) 4)
Xos T X

E, =

while the dynamics of E; (representing the electrical part of the generator) are given by

sk — B 5)
dt¢ 7Td0 et 4

in which X/ (p.u.) = X1 + 1X| + X4’ with X¢'(p.u.) denoting the generator direct axis transient
reactance; uy(p.u.) is the input to the (SCR) amplifier of the generator; K. is the gain of the
excitation amplifier; T4o(s) is the direct axis short circuit time constant. Substituting (2) into (1)
and (4) into (5), we obtain the state space model

d=w
) D Ws Vs X4 A
»=— o + ﬁ(Pm X’ sm(5) + = XX, sm(b) cos(5)>
o X Xq— X,
E, = T (K Up — X E +— X Vs cos(é)) (6)

in which (3, w, E' ;) 1s the state and uy is the control input. Since P is measurable while E; is not,
it is convenient to express the state space model using (0, w, Pe) as states which are equivalent
states as long as the power angle é remains in the open set 0 <d <.

In the following, we take into account the notation

X/
Tho = LTy
0 =y

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855



836 G. DAMM, R. MARINO AND F. LAMNABHI-LAGARRIGUE

where T, is the direct axis transient short circuit time constant. Differentiating (2) with respect
to time, and using (1)—(5), we obtain

d=w
. D w
W= — ﬁw_ﬁs(Pe_Pm)
- 1 1 (Vs . , o Vs . ,
Po= — —— P+ —1 —sin(d) | Keuy + Tyy(Xq — X)) ——wsin(0) | + TjyPew cot(d) ¢ (7)
TdO TdO de ‘ de

which is valid provided that 0 < <=. Note that when ¢ is near 0 or near = the effect of the input
uy on the overall dynamics is greatly reduced.
The generator terminal voltage is given by

JXE, e/ 20 4 Xy Ve /2

Viel? = ;
' .]de
where
XL
Xs=Xt+—
2
de = Xd + Xs
so that its modulus is
1
V, = T (XZE] + VIX§ + 2X,X4E,V; cos(5)'
or in the new state variables
1/2
X2 P? X2V? 22X X4
V, = ste 4 2dls L TS C pocot(d 8
' <V3 sin(6) X3, Xa  © ©) ®

which is the output of the system to be regulated to its reference value Vi, = 1(p.u.)

We must remark in this model that mechanical power, power angle and line impedance are
not available for measurement. Actually, this is the main blocking point for nonlinear control of
power generators.

We avoid this problem using the relation (see [11])

—0V2 £ \/0VE— (0 + PIVAVI- V)
X, =
) 0+ P

to express the line impedance, and the relation

Ve [ XaVs , X2
é = arccot <XsPe (— Yo +4/VE— V—Sng (10)

to express the power angle. With respect to the mechanical power, we will present an adaptive
scheme to recover its value. Note that in Equation (9), we use X; as the impedance of the line up
to the point of the network where the voltage is equal to V. Errors in the infinity bus voltage
will be expressed as a different value of line impedance, leading to an equivalent result for the
controller.

)
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One must also remark that (10) is a one-to-one function from ¢ to V; (as V; is positive). As a
consequence, (Vy, w, P.), which are measurable and are available for feedback action, is an
equivalent state for models (6) and (7).

3. NONLINEAR ADAPTIVE CONTROLLER

The operating conditions (Jy, wg, Pey) of the synchronous generator model (7) are given by
Wy = 0

Pe():Pm (11)

V. .
— Py + — Kous sin(d) =0
Xgs ’

Note that while wy = 0, P = P, are not affected by uy, from the third equation above we
see that there are two operating conditions ds, J,, 0<ds<n/2, n/2<J,<n for constant inputs
up > (P Xys) /(K. V5); (05,0, Pry) is an asymptotically stable equilibrium point while (J,, 0, Pp,) is
an unstable equilibrium point. The stable operating condition (Js, 0, Pr,) and the corresponding
excitation constant input

Pdes
Vs sin(ds)

are chosen so that the modulus of the generator terminal voltage

Keuf() =

1
Vi=v- (XZK20Gy + VIXG + 2X XgK iy Vs cos(8))'
ds

is equal to the prescribed value Vi;.

The objective of the control system is to keep all states and outputs bounded and
asymptotically bring outputs/states to their reference values. These objectives may be
summarized as

0<0<180 W 0

lwl<wy<oo, lim | Pe| = | Py
[—00

|Pe| <00 Vi Vie

where w,, is a limit value for the angular velocity that is specified by the constructor.

One must remark that parameters may, and will, abruptly change in time. For instance, the
parameter P, may abruptly change to an unknown faulted value Py, due to turbine failures, so
that (Vy, 0, P,) may not belong to the region of attraction of the faulted equilibrium point
(Vir, 0, Pmy). The state feedback control should be designed so that typical turbine failures do
not cause instabilities and consequently loss of synchronism and inability to achieve voltage
regulation.

A reduction from Py, to (Pp), of the mechanical power generated by the turbine, changes the
operating condition: the new operating condition (9), is the solution of

B (Pm);  sin(d), _
P sin(ds)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855
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and since (Pn); is typically unknown, the corresponding new stable operating condition (ds), is
also unknown. The control system must recover this new operation point, generate a trajectory
towards it, and drive the system to this trajectory.

To develop the control, model (7) is rewritten as

d=w
. D Ws
= — ECU — E(Pe — 9)
. 1 . Xq— XDV2 .
P.=— —P.+ Vs sin(d)K.ur + M o sin?(8) + P cot(d) (12)

- TZiO Xas Téio deX:is

in which 60(¢) is a possibly time-varying disturbance; the parameter 6 is assumed to be unknown
and to belong to the known compact set [0, 05,] where the lower and upper bounds 6,,, 8, are
known.

Let 6,(7) be a (at least) C? reference signal (toward the new equilibrium point) to be tracked.
In order to build this trajectory (d;) toward the equilibrium value of the power angle (J5), we use
Equation (13) where we replace V' by its reference value Vy,; Vs is considered as 1(p.u.); X is the
impedance of the line up to the point of the network where the voltage is equal to V;, and is
calculated by (9); X4 is a known constant and finally P, is replaced by P, that is the estimation
of P,. The resulting expression is

|78 Vs X2 .
5, = arccot > ——Xg+ 4| VE-2p2 13
' <<X5Pm> < Xas ¢ N V52 m)) ( )

As arccot(x) is a one-to-one smooth function, one may compute the correct o, for each set of
arguments. Remark that as Py, goes to P, 0, goes to Js.
In order to estimate P,, we define (& is an estimation of w)

}N)m:Pm_IA)m

De = (0 — @)

One must not confound this new defined @, with variable & that we will define later. We may
then write

B
I
-

Py = — Py =—70
: D . o A
D= — ﬁw—ﬁs(Pe—Pm)
and then, using also the second equation of (7), we conclude that
- D . o
We = — ﬁ e + ﬁ% Pm
or in a more concise form
Pm 7 ~m
| T | ws D .
We H H e
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which eigenvalues are

1 —-D + /D? —4Huwyy,
S H
We may then see that a suitable choice of y; will give an exponentially stable estimation.
Actually, any y, > 0 will meet this requirement, in particular a 0 <y, <D?/4Hw that will give
two negative real roots.
Next, we define

() = (1) — 6:(1)

where, taking the time derivative, we obtain
5 =w— (1)

As we want that the error system be a stable linear system, we state o™ as the desired value for
o (taking 1; > 0):

and then we may define

=0 —0*=w+110— 05

Taking the time derivatives of both equations leads to

5: —}45—"-03
N D Wy o3 . .
G =~ o+ 500~ P = 775+ o~ (14)

Following the same technique, we define (4, >0,k > 0) the reference signal for P. that
linearizes our system:

H D 5 - ~ 1. roms\2 «
* _ ) _ = o 2 ~ ~ - _S ~
P; _ws{ Hw A0+ D 5r+iza)+5+4k(1_]> w} +6

where 0 is an estimate of 6 and

P.=P. - P¥

Rewriting the second equation of (14):
IR PO
:—ﬁo efbwféfzkbﬂw

and taking the derivative of P¥
. H( D
£ _ _ = ~
Pe _ws{ H(w )
2 D ~ .
(21 + A + k % <— —(0(1) e)—ifﬁ—l—hd)—&)

o

"
+U—1X1ﬁ+w&+é E
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Equation (12) can finally be rewritten as (6 = 0 — é)

52—215—0—(0

sz L s ~ ko2, wsx

D= —0—/1® HPe 4(H>co HH

2 1 Vs (Xq = XV, V? )

P.= ——P.+ sin(0) K, u +¢wsm 0) + P.ow cot(o

e= o Pt SRy () + Peo> cot(9)
H

, D T~
— —{ <—/L% + 147 ﬁ)(—)qé + o)
D . kog\2 D ar . . O “
* (‘ﬁ“l“ﬁz(ﬁ) )(_E“’_“5+”1“’_EPC_5T>}
D kron\2\ 2 4
—<—E+il+}.2+z(ﬁ) )9—9

D k s,
- (—E+zl+ﬂ,z+Z(H) )0+w 5. +55

We can see from Equation (15) that in order to compute our control signal we need
derivatives of ;. To do so, we must remember that
_ds, dPy
bodp, dr
_d%,dPy L d*Py,
dp2 dr  dpP, d
&6, dPy  d%5, APy . 4o, d*Py,
"dp, At Tdp, d2 dP, dP

These computations may be seen in Appendix A leading to

5r—y1;£;65e
5r—yl%cﬁe+w;§;%@— Am)—%%ffﬁ Vljg;%e
S5 =7, j%:cﬁe—i— yl%%(é— Am) Vlfégdﬁz/'jz%é

(15)

the

(16)

where dd,/dPy,, d*5,/dP2 and d*s,/dP} are given by (A1), (A3) and (A5) in Appendix A.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—
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Since some of the terms of &, and 5r are not available for feedback, we define new variables d,,

and 8,, that will be used for our control law. These variables are defined such that

Sy — 81y =0

d*s; o 5 dé; Do +
——0— 1 A 12 0
dpPi H dp, H
Defining (13 > 0), we may compute the control signal that will linearize the last equation of
(15):
__ TaXas
U =K, sin@)

1 Xa =Xy o . >
= P.—— 0)— P t(d
d)() Téo € deXés stIH () e(,l)CO()

H D .
+ —{ (/1% + 1424 —)(,115 + @)
s H

D k rwg\2 D 27 . W “
+<+/L1+}»2+4(H)><Hw/ul(5+/11(0HPe(Sru>}

*ﬁJr)q +/12+1;(a1);>2)é+é

=

+

—
o)

k{ D ko2 s - ws. D. Hs:
_Z<_ﬁ+)~l+/b2+z(ﬁ>)Pe_)GPe"‘Ew_w_&ru__éru

N N

Remark here the use of d,, as the feedback available variable. Now, defining the new constant

ot (Gonenii)

we may rewrite the previous equations as

T:j(]XdS
U =K. sin(@) 0

o = 1 P (Xq — X7)

= P e V2w sin®(8) — Pew cot(d) + 10 + 0
S

do
H D v . D 2% 4 o~ O g

+ E{ (—if +14+4 ﬁ) (=410 + @) + ¢ (—ﬁa) — 36+ @ _ﬁpe - 5”’)}
k do 5.} D H

— ey =y == =2y, —= | P. — 13 P, +%a~’——5u_—5u 17
4<1 71 lde Vldpﬁl> e 3L H . r . I ( )
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and
P.— — Ti,dope + %w sin%(3) + Pec cot(d)
- wﬁs{ ()ﬁ + 142 %)(MSJr @) + c1 (%w — I35+ M — %Pe - 5}) }
- 0—c19+55 +55 Xd:/Tﬁ,O sin(0)K. VSTI;O—ﬁ“((S)¢ (18)

Substituting (17) in (18) one will find

< 1 Xa —XDV:
PP=——P +—-——5 o)+ P, t(o
o T . + XaX', o sin“(0) + Pew cot(d)

H . . D ~ . D ~ N .
_ 55{ (/L%*F 1 +A1ﬁ>(215+w)+cl <ﬁw/ﬁ5+/{1wﬁPeér)}
~ A ~ D . H -
—cb—-0—-c0+—06.+—0:
s s

1 Xg— X!
“r‘—Pe—M

V2w sin?(8) — Pew cot(d)
T Xy Xas ° )

H , , D . r o~ D z . <
+ 5{ (—Af +1 +A1ﬁ)(—/u15—|—60)+6’1 <—ﬁw—)ﬁ5—&—llw—ﬁs& - 5m>}

S

P do, d?s, w5 D. H:
+c0+0—= — 2 — Pt B — b, — by
1 4<C1 Y1€1 7 4P, ldP%n) 3 H o, o,

that may be rewritten as

2
< k do, d?, \ « < o L do, d?s, \ ~
P, = Z(Cl *Vlclﬁfzﬁ @)Pe 7/13Pe+ﬁw7 (Cl — 7101 =~ b -2 1@)9

Then, the closed-loop system becomes

b = 757/12@—%Pe—15(%>2@+w35

(19)
< k do, d?s.\ «
P.= "¢ - - | P,
3 (Cl N4p,  ap )
- s do, d?o; \ 5
—_ )L3Pe+ﬁw_ (Cl—ylcl dP 2 dﬁr2n>0

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855
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The adaptation law is (y is a positive adaptation gain)

; , . do, d’0r\ | o) 4
HyPrOJ<<Pe <01 *V151E*2’/1 ﬁ) +wﬁ>,0> (20)

where Proj(y, é) is the smooth projection algorithm introduced in Reference [17]
Proj(y,0) =y if p(d)<0
Proj(y,0) =y if p(0)>0 and <grad p(f),y)<0 @1
Proj(y, é) =[1- p(é)lgrad p(é)|] otherwise

with

(0 — (Our + 0m)/2)* — (Orr — 0)/2)
&2 4 2e((0ar — Om)/2)

for ¢ an arbitrary positive constant, which guarantees in particular that

p(0) =

(i) Om — e<O(D<Oy +¢
(ii) [Proj(y, )<yl )
(iii) (0 — ) Proj(y, 6)=(0 — )y

We may remark that if P, and & were the errors from the state to an equilibrium point, the
adaptation law would be equivalent to a gradient approach. But this analysis, globally, is not
true since these two errors signals are not the state errors. Only in a small region around the
equilibrium point this would be valid.

To compute this adaptation law, let us consider the function

W =16+ &+ P?) (22)
whose time derivative, according to (19), is

S R, B ) ~&~_§(%2~2
W= =018 = 12 = P+ & 720 4H)w

2
k do d*:\ 5 do d*0: ) 55
- 1 — ) )—Ar_2" Ar Pz— —) —Ar_2 —Ar PC
4<cl nergp T dP%) e (cl negp -~ dPrzn>9

Completing the squares, we obtain the inequality

W< — 8 — 1o — a2 +%(52 (23)

which guarantees arbitrary % robustness from the parameter error 0 to the tracking errors
0,d, P, (see Reference [18, Section 5.4]). 5
The projection algorithms (21) guarantee that 6 is bounded, and, by virtue of (22) and (23),

that &, @ and P, are bounded. Therefore, 6 is bounded. Integrating (23), we have for every
t=1=0

t - - 2 [
- / (210 + 206” + 23P%) dr+z / 6% dv= W (1) — W(1o)
fy 4]

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855
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Since W (f)=0 and, by virtue of the projection algorithm (21),
é(t)ggM - Hm +¢&

it follows that

t
/ (210% + Jo@® + 13P%) de < W (1) +%(9M — O + &)°(t — 1)

to
which, if W(#) =0 (i.e. 7 is a time before the occurrence of the fault), implies arbitrary %>
attenuation (by a factor k) of the errors 6, @ and P. caused by the fault. To analyse the
asymptotic behaviour of the adaptive control, we consider the function

1+ ~ 11~
V:—52 ~2 P2 __02
2( +a°+ °)+2y

Its time derivative is

N S NN B ) ~&~_lj&2~2 Y
V= =& = hoi? = iaPl 620 4<H)w+y06
2
g G0 AP0 k(A A 5
1 /lldﬁm /ldﬁfn ¢y 1 /lldf’m yldﬁrzn e

Then, using the adaptation law, we may find (remember that (é = —é)):

2
. « N YORY k do d?o, \ -
52 4 ~2 2 K(Ws\ .y K _ 291 r) 52
V=-10 VEXOREEIEY oo 4< )a) 4<01 ylcldﬁm 2y, d13r2n>Pe

The projection estimation algorithm (21) is designed so that the time derivative of V' satisfies
V< — 6% = J@® — I3P? (24)

Integrating (24), we have

=00

!
lim / (A16% + Jo@* 4 A3P2) dt < V(0) — V(00) <00
1y

From the boundedness of 5, @& and [;’e and Barbalat’s Lemma (see References [19-21]) it
follows that

5(1)
lim || @) ||| =0
Pe(1)

We may now rewrite the closed-loop system following the normal form:
F=Ax+Q"0

6= — AQ%

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855
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which leads to

M= 1 0 1
k roq 2) W
i= (2 4(H> H P
o, k( D k (og\2
_ 0 ﬁ <)~3+Z<ﬁ+/11+iz+z<ﬁ)>>_
0
s i
+ H 0
D k s\ 2
(ﬁ”‘”2+z(ﬁ))
~ Wg D k g 2 ~
oz—y[o = (E—Xl—lg—z(ﬁ>>]x (25)

And then computing (for a constant ¢;):

2 D k(o2 &
QQT:% (_E+21+/12+Z(%>)=02>0

we then may show by persistency of excitation (see References [19-21]) that X and 6 will be
globally exponentially stable, and then all error signals go exponentially to zero, for all (at least)
C? 8:(Pp, x).

It is important to remark a very interesting feature of the proposed controller: all states go
exponentially to the faulted equilibrium point that is completely unknown. Actually, all states
go exponentially to trajectories that go themselves exponentially to the unknown equilibrium
point. We must also remark that both convergencies are simultaneous. To detail this feature,
note that ¢ will converge to the trajectory d, but, since J, is a one-to-one smooth function of P,
it will converge exponentially to the correct equilibrium value d, as Py, converges exponentially
to Pp,. This means that the reference trajectory (d,) will converge exponentially to the unknown
equilibrium point (J5), and this convergence will be simultaneous to the convergence of the
power angle (0) to the trajectory (d;), what implies that lim,_,, (6 — d5) = 0 exponentially. We
must remark that the same happens to the other states (w and P.). They converge to their
reference trajectories [w™*, P¥], and these trajectories converge to the faulted (unknown for Pe)
equilibrium points of w and P, as @(f) and P.(f) converge to zero.

Remark

We must observe that there are two adapted values for the mechanical power. The reason is that
even if both results finally recover the same value, they are not used for the same purpose,
neither as equivalent variables. Note that P,, is the estimation of the unknown parameter Py,
replacing it in the process of building the trajectories. It was designed purposely as an estimator
and its behaviour can be defined as desired, such that it can respect the restrictions imposed for
our trajectories, mainly with respect to being at least C*. Furthermore, its time derivatives, that
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are needed for the controller, are available. As a consequence, P, is very well behaved, going
smoothly to the correct value of Py,.

On the other hand, 6 was designed as the control adaptation. Even if it finally recovers the
correct value of P, (faster than P, in some cases), it is not as well behaved, nor its time
derivatives are available. As a control variable, it was expected to be swift. That is what assures
the awareness of the control signal, being able to act very fast to assure the stability of the power
generator.

4. SIMULATION RESULTS

In this section we present simulations of the proposed controller, using the following data:
ws =314.159 rad/s, D=5pu., H=28s
Tao=69s, K. =1, Xq=1.863p.u.
X, =0.257 pu, Xr=0.127 p.u,, X =0.4853p.u.

The operating point is d; = 72°, P, = 0.9 p.u., wy = 0 to which corresponds V; = 1 p.u., with
Vs=1pu.

The goal of the first simulation was to verify the effect of a severe fault on the turbine. It was
considered a fast reduction of the mechanical input power, and the simulation was performed
according to the following sequence:

1. The system is in pre-faulted state.
2. At t = 0.5 s the mechanical input power begins to decrease.
3. At t = 5.5 s the mechanical input power is 50% of the initial value.

The simulations were carried out using as control parameters:
=2, =10, 13=100
7=0.1, k=001, y, =3D*/4Huw,

Figure 1(a) shows that the trajectory for the power angle (d;) goes smoothly to its final value
(9s), and that § matches it almost perfectly, being driven to its faulted unknown equilibrium
point.

In Figure 1(b) we see that the rotor velocity is correctly and smoothly driven to its equilibrium
value, as well as the electrical power, driven to its trajectory that finally recovers the unknown
equilibrium value as we may remark in Figure 1(c).

Figure 2(1a) shows how the output voltage drops during the fault, and goes to its correct
value when the system is driven to the correct equilibrium point. If the estimation were not
correct, there would be a steady state error.

One can see in Figure 2(1b) that the control signal is very smooth and is kept inside the
prescribed bounds.

We may see in Figure 2(2a) the adapted value, 6, (dashed line) of the mechanical power (full
line). It is accurate and swift, such that the correct value is adapted almost at once. We may
remark that it recovers the correct value faster than the estimator does, as we may see in Figure
2(2b) where it is plotted the estimated Py, (dashed line) and the mechanical power (full line). On
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Figure 1. (a) 6 (-), 0r (- -), (b) @, (¢) Pe (- =), P (-)-

the other hand, the estimated value P, is very smooth, respecting the restrictions on the
derivatives imposed for our tracked trajectory.

Note that during all time, the errors are very small. They can be made even smaller by
increasing the parameter k. The choice of parameters is mainly based on the limitation of the
control signal, as well as the desired bounds for states and outputs.

We present now the effect of faults on the transmission line. It was considered a large
increment of line impedance, followed by an almost as large reduction. This is equivalent to the
lost of part of the transmission lines, followed by a partial recover. Simulations were carried out
following the sequence:

1. The system is in pre-faulted state.
2. At t =1 s part of the power lines falls. This is reflected by an increment of line impedance

in 33%. Note that the change is instantaneous.
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Figure 2. (1a) V4, (1b) Control signal, (2a) 0 (=) P (), (2b) Py, (=), P ().

3. At t =5 s part of the lines are recovered. This is seen as a reduction of 25% of the initial
value of the line impedance.

The control parameters used for the simulations in this case are

=2, Jp=10, 23 =100
=01, k=001, y, =3D*/4Haw,

Figure 3(a) shows that the trajectory (dashed line) for the power angle (J;) goes smoothly to
its final value (d5), and that ¢ (full line) is able to track this trajectory, such that it is driven to its
faulted equilibrium point.

In Figure 3(b) and 3(c) we may see the other two states, the rotor velocity and the electrical
power, being disturbed by the faults and then driven to their correct values by the controller.
The same is verified in Figure 4(1a) for the output voltage.

One can see in Figure 4(1b) that the control signal is very fast, acting at once to keep the
stability of our system. It is able to keep all signals inside the prescribed bounds, and to drive
them to their correct values. Contrariwise the previous simulation where, as a mechanical fault,
the perturbation was quite slow, here we see an electrical fault, then a much faster one, asking
for a sharp response from the controller.

We may observe in Figure 4(2a) the control adaptation variable 0 (dashed line)
and the mechanical power (full line). In Figure 4(2b), it is presented the estimation
P, (dashed line) of the mechanical power Py (full line). One may then remark that both
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Figure 3. (a) 6 (-), 6r (- -), (b) @, (©) Pe (- -), P ().

variables recover the same final value, but while Py, keeps unchanged, 6 changes in time. This
shows the difference between é, as control variable, and Py, as estimated value.

Finally, in Figure 4(2c), one may see that the correct value for the transmission line
impedance is computed by our technique. The value is recovered very fast, such that the system
may be driven to its correct equilibrium point. This computation is filtered in order to respect
physical limitations on the control signal magnitude.

5. CONCLUSION

In this paper, we have treated the problem of exponentially stabilizing a power generator using
available output measurement. The proposed controller may be implemented in practice since
only actually measured outputs are used for feedback. Usually, nonlinear controllers found in
literature need the mechanical power, the transmission line impedance and the power angle,
which make them not implementable. On the other hand, the linear controllers, usually
implemented in power plants, do not assure a large stability region, and are not able to stand
large perturbations.
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Figure 4. (1a) V4, (1b) Control signal, (2a) 6 (=), P (=), (2b) P (= ), P (), (2¢) X (-), Computed X; (- -).

To design the proposed controller, we have first developed techniques to compute the
unknown parameters such that the equilibrium point may be recovered after a fault or
parameters changes. We then design trajectories (one for each state) toward this new point that
are tracked by the states, driven by the controller. This is achieved by an adaptive output
feedback linearization scheme designed using backstepping techniques, that also assures
boundedness of all signals. The convergence of the trajectories to the equilibrium point is
simultaneous to the convergence of the states toward the trajectories and the generation of these
trajectories is made on-line by an exponentially stable adaptive estimator that recovers the
mechanical power value.

Finally we present simulation results that corroborate our claims. They show the good
behaviour of all states, outputs and control signal even in the presence of severe faults on
turbine and on transmission line.

As further developments, our main goal is to extend these results to the multi-machine
case. Actually, the single-machine study is a step toward the more general (and in
practice the most important) case of multiple interconnected generators undergoing
interzone oscillations. Since, in general, power plants are located very far from each others,
centralized controllers that need information from each machine in the system are not realistic.
The scheme proposed in this paper could be a starting point in the design of decentralized
controllers.
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APPENDIX A

In the following, we will compute the terms dd,/d P, d*6;/d P2, d°6;/d P}, dPy, /dt, d* Py /d7?
and d*P,, /d#* in order to build Equation (16).
For the sake of simplicity, we first define

Vs
a=—
Xs
Vs

X
h =21
de

such that we may rewrite (13) as

a(—b—l— Vi —f’ﬁq/cﬂ)

o, = arccot -
Py

Using

d arccot(x) 1
dx 142

we compute

o(—ber/ V222 1

do, 7 VB
dPp, ! (~b+4/ Vg_P;/aZ)z
+ 7
é(Nl + N,)*Den (A1)
where
1
Den = —

(b Vi B
M= = a( b\ Ve Py )i
Ny= —1/a\/ V2 — P2 /a?
Now, recalling that

d?s, (d Den
dp2

dn, dN2)>
= Ny + N>) + Den — + — A2
ap,, NN ) <de Py, (A2

m
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we first compute

_ lv2 _ p2 /2
le _2a< b+ Vlr Pm/a> 1

— = ~ +

dPm P, aPu\/V2E — P2/
dN, Py,
dPn B(VE - P2 [a?)??
) @ (7b+\/ Vlzrf}%/az)2 B 2(7b+\/ Vlzrff’%/az)
d Den Py Pur/VE-PL )02
p 2
dP a (7b+ Vlzrff’&/az)‘
1+ v
and then
B a(—h+\/ Vﬁ—ﬁ%/az) B 1 ) az(—b—M/ Vlzr—}ﬂ’ﬁ,/t/ﬂ)2 B 2(—b+\/ Vlzr—f"zn/az)
d25r P a\/Vlzrff’?n/az Py I‘A’m\/V‘erf’lzn/a2
~ - N 2
dPEﬂ a (7b+ V‘zrflslzn/uz)
ISR VAL
_b V2_p2 /g2 ~ ~ A A
2t /Vihe) *VPE: b 1/aPu\| Ve — P2 a® — Po/dd(VE — P2 [a?)C/?
- 2
1+ az(b +1/VE - PZm/a2) /P2
éMl*Mz*M3+M4*M5 (A3)

Here again we have split this equation such that M;, i =1...5 as well as its derivatives are
defined as

M1 = 1 N2
(1 . (ﬁ))
2,
2
a2<b+\/Vl2r}A’§n/a2> 2<b+ Vlzrf’rzn/a2>
M2=—2 - N
Py P/ V2 - P2 /a?
a(—b—l—\/Vtz—an/az) !
M3 = — - - .
P a\/ Vi — P /a?
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1
M4 = — 2
a* (7b+\/ Vlzrff’,zn/az)
I+ 23
a<—b+\/V3—ﬁ§n/a2> . I
M5=2 R + - -
P aPm\/ V2 — P2 J a2 B(VE— P2 [a?)B?
and
) @ (—b-h / AV‘zr—IA’%/az)z B 2(—b+\/ Vtzr—f’ﬁ]/az)
s, P NG
b 3
de (1 a* (7b+\/ V:;Iaﬁl/az)2>
+ 7
2
dM2_6a2(—b+\/V12r—P12n/a2>+6<—b+\/V§—P12n/a2) 5

= + ~
dP, an P2 /Vtzr _p /Cl2 (Vtzr — an/a2)a2
2(—19 +4/ V2 - ﬁgn/cﬂ)

(V2 - B /a?) P

al =b+/ V2 - P2 a2> 5
dM3:2< v m/ . I P,

dPy P abp\[V2— P2 J2 Ve~ P /a?)C

2 (ben/VimB)e)  2(oben/viBe)

dMy ) Pur/ V2P
AP (1 L (ﬁ))
7

_ 2 _ P2 /2 o
dM; a< b+/Vi Pm/a> 3 32

p R - o b 5/2
dPp Pf; aP?n /Vterpgn/az aS(Vlzr—Przn/cﬂ)( 2

The third derivative of §, with respect to Py, is then given by

d*, dm dm. dM; dM. dMm
L o e My s My + My 2 My + M1 My s — s M5 + Myt (A4)
dp3  dPy, dPp dp,, m dP,,

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:833—-855



854 G. DAMM, R. MARINO AND F. LAMNABHI-LAGARRIGUE

Its complete expression being

_6 a(fbwL\ / AV[erf’ﬁn/uz) _ 3 3p2

d35r P aP?, \/V&—f’&/az B @(V2—P} /)
dp3 @ (bin/V2Pe)
1+ 5
2
) az(me/Vferm/az) 2<b+\/V12rP§n/az>

+ 2* -2 ~ -
~ 2 3 p p
(1 Le (cb+\/Va-Bi/e) ) Fm P m\/m
P
2 5 = 5 2 (V2 — P2 /a2
B bV Fpja @~ Phj)

P B 7, B a\/Vlzrflh’fn/a2

*

P N
1 a (7b+\/ Vizrff’fﬂ/az)z \
+ )
2
) a2<—b+\/V12r—IA’I2n/a2>
n K A (AS)
(1 + @ (b y/Vi-B)e2) ) o
P

6<b+\/V§qu/a2) , 2<b+ \/Vg—Pgn/aZ>
+ s - A
PAVE- P /a2 (Vi— PL/a*)a? (V2 — P2 a0
a(—b+\/Vt2r—PI%1/a2) !
P a\/ V& — P2 Ja?
Now one may remark in (16) that we need the second and third derivatives of Py,. These

derivatives are not available, as they would imply the exact knowledge of P,,. To avoid this
problem we first remember

_|_

dh
dr = V1We

and remarking that
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dzﬁm . W5 ~ D .
a2 71®e Vlﬁpm Vlﬁwe
; A D .
—ylﬁ(Pm_Pm)_Vlﬁwe

Ws A =~ D Ws =
:Vlﬁs(e_Pm)_Vlﬁwe“"Vlﬁsg

and

—_

d3pm . S 5 D ~
W:/IH m_ylﬁwe
Wy N D (o ~ D .
—y, 5 —y==P, —=
/1H( Vlwe) ylH(H Hwe)
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